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ABSTRACT 

The game is a two-person zero-sum game. On each play, each player selects 
any point on a line of finite length. The payoff is a trapezoidal function of the sep- 
aration between the two selected points; it is constant for separations from zero to 
R,, changes linearly between R. and R„, and is zero for separations greater than   R~. 

The derivation and proof of the solution are interesting due to the discontinuities 
in the slope of the payoff function. The solution includes the special cases of 
triangular (R   = 0) and rectangular (R   = R„) payoff functions.   The game is related 

to search theory in its applicability to the barrier problem. Uniform distribution 
along the barrier is not in general an optimal strategy for either the maximizer 
(detector) or the avoider (transitor). In selecting optimal strategies the detector 
must have more information on the payoff function (lateral range curve) than is 
required by the transitor. 

1 
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I   The Game 

A solution is presented to the following rwo-person, zero-sum game: 

Each player chooses any point on a line of definite length.   The payoff is 
a single-valued, non-negative function of the distance along the line between the 
two points, having the shape of a trapezoid symmetrical about zero separation. 

In analogy with the physical problem of a detection barrier, the payoff 
function will be called the lateral range curve (LRC),  the maximizing player will 
be calleH the detector, and the minimizing player will be called the transitor. 
However,  the game is more general in that,  for instance,  the payoff could just as 
well represent capture or damage, and the dimension of the line could just as well 
be time as distance.   The game takes its name from the fact that the aim of the 
minimizer will always be to avoid the maximizer. 

The optimal strategies which are presented as a solution to the game with a 
trapezoidal LRC will also be solutions for the special cases: 

(1)   definite range,   or rectangular,  LRC (upper and lower bases of trapezoid 
are equal) and (2) triangular LRC (upper base equal to zero).    For the definite 
range LRC an alternate solution will also be given.   Some special properties of 
the trapezoidal solution applied to the triangular LRC will be pointed out. 

Although the rules of the game allow both players to know the LRC,   it will 
be seen that,  in order to apply the trapezoidal strategies,  the transitor requires 
less information thar does the detector.    It is of course assumed that neither 
player knows the position chosen by his opponent on any one play. 

II.  Definitions of Symbols 

The lateral range curve (LRC) is given by, 

P (r) = C (constant),   r  s R  , 

R0 2 - r 
P(r) = ' R2 - Rv R   s r s R2 

P(r) = 0 ,       r >   R2, 

in which r is the separation between the transitor and the detector. 

W=   I P(r)dr = C (Rj + R2). 

"R2 

In the detection problem analogy,  W is the sweep width.   A quantity that will 
appear in the solution is Z, which is defined as 

Z = L Mod (ft = L Mod (R   + R ), 

in which L is the length of the line upon which the game is played.   N is the 
integral number of times that w/c will go into L, 

1N " w/c   " R1+R2 
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III     The Detector Strategy 

The detector strategy for a trapezoidal IRC is a mixed strategy described 
by the following distribution of points.   Measured from one end of the game line, 
there is a strategy point at y and at L-y for each value of y shown in table I. 
The frequency (probability of selection on each play) of each strategy point is 
given in table I opposite the corresponding value of y. 

TABLE I 

THE TRAPEZOIDAL DETECTOR STRATEGY 

Frequency 

R, 

R1 + W/C 

R   + 2 W/C 

Rx + 3 W/C 

Rx + NW/C 

(N + 1)/(N + 1) (N + 2) 

N  /      (N + 1) (N + 2) 

(N - 1)/(N + 1) (N + 2) 

(N - 2)/(N + 1) (N + 2) 

1   /      (N + 1) (N + 2) 

Note that the largest value of y,   (R, + NW/C),  will be greater than L if 

R. >Z.   This is not a permissible strategy point since it is off of the game line 

In this case a solution is obtained by letting the largest value of y be L instead of 
R. + NW/C,  and letting the frequency of this point remain equal to 1/(N + 1)(N + 2) 

IV.   The Transitor Strategy 

The transitor strategy also consists of a set of points with corresponding 
frequencies.   Measures from one end of the game line,  there is a strategy point 
at X and at L - X for each value of X shown in table II     Again,  the corresponding 
frequencies are shown opposite each value of X. 

TABLE II 

THE TRAPEZOIDAL TRANSITOR STRATEGY 
X Frequency 

0 (N + 1)/(N + 1) (N + 2) 

W/C N       /(N + 1) (N + 2) 

2W/C (N - 1)/(N + 1) (N + 2) 

3W/C 
• 

(N - 2)/(N + 1) (N + 2) 

NW/C 1         /(N + l)(N + 2) 
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We see that the transitor requires less information about the LRC than does 
the detector to apply this strategy     The detector must know R. and R,, whereas 

the transitor need only know their sum,   R. f R    - W/C. 

Since the transitor strategy is independent of R., we can show a completely 

general plot of the transitor trapezoidal strategy as a function of W/CL.   In 
figure 1 the transitor strategy points are indicated by the solid lines.   In the 
special case of R. = 0 (triangular LRC) the transitor and detector strategies 

are identical.   The solid lines of figure 1 therefore also represent the detector 
strategy for the triangular LRC.   The dashed lines and shaded areas in the 
figure will be discussed in a later section. 

It is interesting to note that there are no discontinuities in the transitor 
trapezoidal strategy as W/C varies with respect to L.   At each integral value 
of L/(W/C). pairs of strategy points coalesce and then diverge,  and in this 
process the sum of the frequencies of the pair remains constant.   This is 
illustrated by the frequencies shown in figure 1 on both sides of L/(W/C) equal 
to two, and to three. 

V.  The Game Value 

The value of the game is given by 

for 0 s Z « 2R, N+I "" w T 

c (Z - 2R:)       C 
V=T*FT-~  (N+1)(N+2)(R2-Rj)  for 2R1 sZ<R! + R2 

The value of Z must be less than R. + R~ by definition.   The game value is of 
course independent of the particular strategy used by either player.   It is a 
unique function of C.   R..  R„,  and L, (Z and N are unique functions of R.,  R2 

and L).   An optimal strategy is one which will prevent the opposing player 
from achieving an expected payoff better than the game value, whatever strategy' 
the oppos.ag player may use.   The strategies for detector and transitor, pre- 
sented in the previous two sections, are optimal, but they are not necessarily 
the only possible optimal strategies. 

The game value is 

(a) the minimum expected payoff for any transitor position if the detector 
uses an optimal strategy, 

(b) the maximum expected payoff for any detector position if the transitor 
uses an optimal strategy, and therefore, 
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(c)   the expected payoff (i.e. the a priori detection probability on each play) 
if both players are using optimal strategies, 

Here a priori means before the players have chosen their positions for the play. 
The choice of position is made by random selection from the distribution of 
positions represented by the optimal strategy. 

* 
VI. Special Cases of the Trapezoidal LRC 

It has been pointed out that the optimal transitor and detector strategies 
given become identical for the special case of the triangular LRC,  that is when 
the upper base of the trapezoid is zero.   In this case,  if either player uses this 
optimal strategy,  then the expected payoff is independent of the position selected 
by the opposing player. 

In the special case of the rectangular LRC,  that is when the upper base of 
the trapezoid is equal to the lower base, the positions in the given optimal stratr 
egy for the detector become as shown by the dashed lines in figure 1.   In this 
special case there is also another set of optimal strategies which have the same 
properties as the previously given strategies for the triangular LRC.  namely: 

(a) Identical strategies for transitor and detector,  and 

(b) Expected payoff independent of position for one player if other player 
uses this special rectangular strategy. 

In this special rectangular strategy the player chooses with equal probability 
from among N + 1 channels.   The channels are centered at 

Z/2 

Z/2 + W 

Z/2 + 2W 

Z/2 + NW 

and the channel widths are 

W   . 
T 

Z - W 
Z    T 

Within a channel the choice of position is uniformly distributed over the width 
of the channel. 

These channels are indicated by the shaded areas in figure 1. 
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VII.   Method of Derivation of Solutions 

Since there is no known algorithm (at least none known to the author) for 
solving this continuous-matrix game, the method by which these solutions weie 
obtained should be of interest. 

a     The apparently simplest case,  the rectangular LRC,  was tired first. 
This was done by substituting a discrete matrix for the continuous matrix, 
that is by restricting the players to n discrete points along the line.   By 
letting the n frequencies for one player be unknowns and by setting the n 
expected payoffs (corre?ponding to the n positions of the second player) equal 
to an unknown constant,  we have n linear equations and n + 1 unknowns.    An 
additional linear equation is given by the fact that the sum of the n frequencies 
is unity,    In this case of the rectangular LRC this set of simultaneous linear 
equations yields a unique solution for the frequencies and for the unknown con- 
stant,  which is the game value.    Since the matrix is symmetric,  the solution 
frequencies represent an optimal strategy for the other player as well.   A 
solution was found in this way for a number of different values of n and from 
these solutions the continuous-matrix solution was induced.   The solution so 
obtained is the one given in section VI of this paper.   It has been tested for 
a number of cases of the rectangular LRC in a continuous matrix,  but no 
general proof of this solution has been done. 

b     Next the triangular LRC was solved by the same method.   Again the 
simultaneous linear equations could be solved to give the game value and 
identical optimal strategies for both players.    These were the strategies 
shown in section III (for R.  = 0) and in section IV. 

c.    The general case of the trapezoidal LRC (general in the sense that 
it includes the rectangular and triangular LRC's as special cases) does not 
yield a solution by this method.    The solution was found by induction from 
the two special cases.    Graphs of game value as a function of W/L for the 
rectangular and triangular LRC's suggested that the trapezoidal game value 
would be the one given in section V.    It seemed of interest to see how the 
players would fare if they employed the triangular strategy (expressed in 
terms of W) against a trapezoidal LRC,  giving them the benefit of using 
the W corresponding to the trapezoid.    For the transitor it was found in a 
number of sample cases that he could by this means achieve a payoff func- 
tion with a maximum equal to the suggested game value.   The detector 
however did not achieve a payoff function minimum equal to this value. 
It was apparent that for the detector there is no advantage in going closer 
than R. to the end of the game line,   so the triangular strategy was altered 

by moving all positions a distance R. from that end of the line from which 

they were measured.   All positions were moved,  rather than just the end 
ones, in order to preserve the spacing W/C,  which seemed to be common 
to all solutions.    Frequencies were kept unaltered.    A number of sample 
cases showed that this altered strategy for the detector gave him a payoff 
function minimum equal to the suggested game value,   which showed that 
this was the true game value for these sample cases,   inasmuch as the 
transitor strategy gave the same value for his payoff function maximum. 

8 
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VIII.   General Proof of the Trapezoidal Solution 

The sample cases of course did not constitute a general proof.   The proof 
was accomplished only by considering all possible values of R.,  R„, and L. 

The full proof will not be given here,  but the method will be fully specified. 

It is possible to replace the continuous game matrix by an infinite discrete 
matrix.   In testing the postulated transitor strategy,  for example, the columns 
of the infinite discrete matrix consist of the discrete transitor strategy points. 
The matrix is infinite because the value of L has so far been left open.   It will 
be seen that any finite matrix will be a special case of the infinite matrix for 
which the proof is obtained.   There is still a continuum of rows,  because the 
expected payoff must now be determined for all possible detector positions to 
show that the maximum is equal to the postulated game value.   But this can 
also be reduced to an infinite number of discrete positions by selecting only 
those detector positions at which discontinuities occur in the slope of the ex- 
pected payoff as a function of the detector position.    Then,  because of the 
linearity of the payoff function between slope discontinuities,  the extremum 
of the payoff at these discrete detector positions will also be the extremum 
of the payoff for all detector positions.   The determination of the discrete 
detector positions is illustrated in table III.   The X. are the transitor strategy 

TABLE III 

i - i 2 3 4 5 etc. 

X. 
i 

- 0 Z R1+R2 Z + R1 + R7 2R1 + 2R2 

» - Xi ~ R2 
= (0) Z-R2 R 

1 
Z + Rx 2R, ♦ R2 

y = X. - R, = (0) Z~R1 R2 Z + R2 R, + 2R2 

y - Xi + Rl ■ Rl 
Z + Rl 2VR2 Z + 2R: + R2 3R, + 2R2 

y - xi + R2 = R2 Z+R2 R1+2R2 Z + R    + 2R2 2R2 + 3R2 

points starting from one end of the line.   Notice that Z = L - NW/C is the last 
strategy point measured from the other end of the line as the strategy is defined 
in section IV.   This point is bound to lie between X. and X„ because 

0 sZ <W/C = R. + R   by definition (section II).   Discontinuities in the payoff 

slope will occur at detector positions,  y, given by X. + R   and X  + R2 for all 

values of X. because R   and R2 are the X-y separations at which the trapezoidal 

payoff function has slope discontinuities.   Note that for 1*1,  X. - R   and 

X. - R2 are negative which is not allowed so the discontinuity occures at y ■ 0 
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Note also that for i >3 we have y (X ) ■ y (X   2) + R   + R      We therefore have 

determined all of the discrete values of y without carrying the table to higher 
values of i     The resulting infinite discrete matrix is shown in table IV. 
Frequencies of the transitor strategy points are indicated by f..   The elements 

TABLE IV 

THE INFINITE DISCRETE MATRIX 

i = 

(N+l)(N+2)  f. = 

X. = 
i 

1 

N+l 

0 

2 

1 

Z 

3 

N 

Rl + R2 

4 

2 

Rl+R2+Z 

5 

N-l 

2R1+2R2 

6 

3 

2RX+2R2+Z 

etc. 

y -0 

Z-R2 

Z-R: 

Rl 
Z+Rx 

0 

Z-R2 

Z"R1 
Rl 
Z+Rx 

2 

R2 
Rl 
Z-R, 
Rl 

2R1 + R2-Z 

R2 

Z-R2 R2 

R2 

Z+R2 

2R1+R2 
Z+2R:+R2 

Etc. 

R2 Z-R2 

R2 

2R1+R2-: 

Rl 
Z-R2 

: R, 

Z+R: 

Z+R: 

Rl 
Z-R1 

Rl 

2R1+R2-Z 

R2 
Z-R2               R2 

 i 

of the matrix are not payoff values but are values of r. = X. - y,  which are the 

separations which determine the payoff values,  P(r ).   Separations greater than 

R2 have been omitted because we know that for such separations the payoff value 

is zero. Now it only remains to find the expected payoff, 

<P» =   f    f. P(r), 
i=l     i i 

for each value of y. 

In this we make use of the relationships, 

,    i odd f. +fH1-l/(N + l) 

f. +f.+1 =l/(N + 2) 

f. - f 
l 

f. - f 

.+2 = l/(N + l)(N + 2) 

i+2 = -l/(N + l)(N + 2) 

l even 

i odd 

i even, 

by means of which,  it turns out,  the frequencies can be factored out of ^P^- for all 
values of y. 

10 
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Furthermore,  we find that each value of y greater than those shown in 
table IV produces an expected payoff identical to that for one of the y's in 
table IV.   We have already seen,  in connection with the discussion of table III, 
that each higher value of y,  say y, , will be equal to one of the given values, 

say y  ,  plus an integral multiple of (R, + R„).   Thus for each separation r. 

associated with y   ,  there will be an identical r. associated with y, ,  with X. 

being equal to X. plus the same integral multiple of (R- + R„). 

yb = ya ♦ n (R, + ty 

x   = x. + n (Rx + R2) 

r. = x. - y,  •= x. - y   = r. . 

See,  for example, y = Z + R   and y - Z + 2R   + R„ in table IV.   And we see 

from table III that j ■ i + 2n.   So,  for yL, 
D 

<pb> * fml • W 
2n so 

=   2   f.P(r.) +    I      f.P(r.)   . 
j=l    J     J      j=l+2n   J     J 

Changing indices from j to i and recalling that P(r.) = P(r.) since r   = r., 

we have, 
0 <x> 

<Pb>  \f%    fi+2nP<ri>+  .^W^ i=l_2n i = l 

The first summation is i,ero because P(r ) = 0 for i « 0 ( if y   2 R_, which 

means we must use such y   in generating   (PJ\ ).   The second summation Is 

identical to   (P \ except that all indices of f have increased by 2n, an even 

number.   Thus all indices retain their evenness or oddness.   Therefore, 

<\>   ■ <fa> 

11 
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The values of y ^ R., in table IV are sufficient to generate < P>  for all higher 

values of y.   Therefore, if we find the maximum <P>  for the values of y in 
table IV, this will also be the maximum for all y in the infinite discrete matrix, 
and since the expected payoff is a linear function of y between the discrete 
values of y,  the maximum so obtained is the maximum for all values in the 
y continuum. 

In finding <P> for each value of y in table IV,   it is necessary to consider 
various different limits on the variables due to the slope discontinuities in 
P(r).   As a single example,  in y = 0 the value of P(Z) depends upoh whether 
0 ^ Z ^ R. or R. s Z s R2 or Z •> R2 .   In all, there are five different regions 

of the variables and for each of these five regions it is necessary to find the 
maximum among the < P > for all of the y iu table IV. The five regions are 
shown in figure 2. 
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FIG. 2:   REGIONS OF VARIABLES IN TESTING TRANSITOR STRATEGY 

In each region the maximum <P>   was found to be equal to the game value 
postualted in section V, 

<P> max TT77 in regions 1, 2, and 3 

c (Z-2RPC 
<P> max = N+i  ~ (N+l)(N+2)(R2-ft1)    in 4 aad 5* 

12 
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These five regions cover all possible values of Z,  R  ,  and R      and therefore 

cover all possible values of R. ,   R2,  and L. 

To complete the proof we must show that 

<P> = v 
mm 

for all possible transitor positions with the detector following the optimal 
strategy given in section III.   This is done in the same manner,  but is slightly 
more complicated in that: 

(a) The last strategy point as measured from one end of the game line does 
not always lie between the first two measured from the other end. 

(b) The last strategy point as measured from one end of the game line is 
not always a distance R. + R2 from the next to last. 

(c) There are eight regions of the variables in which   <P>   must be 
determined for each discrete value of x.   These regions are shown in figure 3. 
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FIG. 3:   REGIONS OF VARIABLES IN TESTING DETECTOR STRATEGY 
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Following the same procedure as was described for the test of the transitor 
strategy,  it is found that among all transitor positions: 

*»P/ = xm    in regions A, B, C, D, E,  and P' N      min     N+l 6 

(Z—2R )C 
:P> min " Wl   " (N+1)(N+2)(R2-R^    f°r G and H' 

which completes the proof. 
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